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Euler-Chern correspondence via topological superconductivity
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The Fermi sea topology is characterized by the Euler characteristic χF . In this paper, we examine how χF of the
metallic state is inherited by the topological invariant of the superconducting state. We establish a correspondence
between the Euler characteristic and the Chern number C of p-wave topological superconductors without time-
reversal symmetry in two dimensions. By rewriting the pairing potential �k = �1 − i�2 as a vector field u =
(�1, �2), we found that χF = C when u and fermion velocity v can be smoothly deformed to be parallel or
antiparallel on each Fermi surface. We also discuss a similar correspondence between the Euler characteristic
and three-dimensional winding number of time-reversal-invariant p-wave topological superconductors in three
dimensions.

DOI: 10.1103/PhysRevResearch.5.033073

I. INTRODUCTION

In the past few decades, it has been proven that topology
plays an important role in physics [1–11]. The topological
invariant of a quantum system leads to quantized response
functions and/or robust gapless states at the boundary. For
example, the Chern number of an integer quantum Hall state
determines the quantized Hall conductance and the number of
chiral edge states [12,13]. Such topological invariants describe
the twist of wave functions in the momentum space. Formally,
the Hamiltonian defines a map from the momentum space to
some target space, and the topological invariant is generally
given by the homotopy group of this map. Most recent discus-
sions on topological states have been concentrated on gapped
systems [2–8], semimetals [9], and nodal superconductors
[10].

Different from the topology related to wave functions,
there exists another type of geometric topology in Fermi
liquids. The Fermi sea as a manifold can have complicated
structures, and its topology is characterized by the Euler
characteristic χF [14]. The Euler characteristic changes when
the Fermi level passes through a critical point of the en-
ergy dispersion. The change of χF is accompanied by the
famous Lifshitz transitions [15,16]. In principle, one can al-
ways map out the entire Fermi surface to obtain χF , but only
recently was it realized that χF can be measured directly. An
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important breakthrough is the prediction that the Euler char-
acteristic χF determines a quantized nonlinear conductance
in d-dimensional ballistic metals [17]. This phenomenon can
be viewed as a generalization of the quantized Landauer con-
ductance in one dimension (1D) [18]. It also reveals a deep
connection between the Fermi sea topology and quantized
transport properties. This sparked a series of efforts in directly
detecting χF , including probing multipartite entanglement
entropy [19], measuring the quantized response in ultracold
Fermi gases [20,21], and utilizing Andreev state transport
[22,23].

II. SUMMARY OF RESULTS

In this paper, we discover a relation between the Euler
characteristic and the topological invariants of p-wave topo-
logical superconductors in two (2D) and three dimensions
(3D). We provide a condition under which the Euler charac-
teristic of the metallic state and the topological invariant of the
superconductor are equal. When this condition is satisfied, the
Majorana states at the boundary of the superconductor can be
used to measure the Euler characteristic.

In 2D the pairing potential must break time-reversal sym-
metry so that the resultant topological superconductor is
characterized by an integer that is the Chern number C. For
simplicity, we first focus on the spinless case. When the fol-
lowing condition is satisfied, χF and C are equal.

Condition. We write the pairing potential �k = �1 − i�2

as a vector field u = (�1,�2). In the weak pairing limit
|�| → 0, if u can be smoothly deformed without vanishing to
be parallel or antiparallel to the fermion velocity v = ∇kεk/h̄
on each Fermi surface, we have

χF = C, (1)

where εk is the energy dispersion of the metallic state.
To satisfy the above condition, one would need a p-

wave pairing potential that has the proper chirality on each
Fermi surface. In Fig. 1, we present two examples where this
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FIG. 1. Illustration of spinless Fermi seas with (a) χF = 0 and
(b) χF = 2, respectively. The red arrows on the left panel represent
the fermion velocity v on the Fermi surface. The blue arrows on the
right panel represent the pairing vector field u of a p − ip supercon-
ductor. On each Fermi surface, v and u can be smoothly deformed
without vanishing to be parallel or antiparallel, giving χF = C.

condition can be met by a simple p − ip pairing. In this case,
the number of chiral Majorana edge modes in the topological
superconductor is given by χF . By measuring the quantized
thermal Hall conductance given by the Majorana edge modes
[24–26], one can probe χF through C. A simple p ± ip pairing
cannot always satisfy the condition. However, if an additional
inversion symmetry is present, p ± ip pairing always leads to
χF ≡ C (mod 2). We note a related result in Refs. [27,28],
where it was shown that the Chern number and a different
topological invariant, which is the number of Fermi surfaces,
have the same parity for inversion symmetric odd-parity su-
perconductors.

A similar relation exists in 3D if the system respects
time-reversal symmetry. In this case, we introduce a time-
reversal-invariant p-wave pairing �k = u · σiσy, where σ =
(σx, σy, σz ) are Pauli matrices in the spin space and u is odd in
k. The resultant topological superconductor is characterized
by the 3D winding number Nw ∈ Z. Due to the presence of
both spin components, χF is always an even integer. When u
and fermion velocity v can be smoothly deformed to become
parallel with each other on each Fermi surface, we have

χF

2
= Nw. (2)

Similar to 2D, a simple time-reversal-invariant p-wave
pairing cannot always satisfy the condition above. But with
inversion symmetry, it always leads to χF /2 ≡ Nw (mod 2),
which was given previously in Refs. [27,28].

The above correspondences are robust against weak
interactions, since both Fermi surfaces and topological su-
perconductors remain well defined. In the following, we
mathematically establish the conditions given above.

III. EULER-CHERN CORRESPONDENCE IN 2D

The connection between the Euler characteristic and the
Chern number may seem surprising at first, since the Euler
characteristic is defined for gapless Fermi liquids, while the
Chern number is defined for a fully gapped system without
a Fermi surface. In 2D, the Euler characteristic is given by
the number of electronlike Fermi surfaces minus the number
of holelike Fermi surfaces, while open Fermi surfaces do not
contribute to χF . On the other hand, the Chern number is given
by the integration of Berry curvature over the entire Brillouin
zone. However, in the weak pairing limit, the Berry curvature
in a superconductor is concentrated near the Fermi surface,
and the sign of the Berry curvature near the Fermi surface
depends on if the Fermi surface is electronlike, holelike, or
open. In this way, the information of Fermi sea topology is
encoded into the Chern number.

To generally establish the relation between χF and C, we
express them as the winding number on the Fermi surface of
two different vector fields v and u, respectively. v is given by
the fermion velocity, and u is given by the pairing potential
�k. Let us first consider the spinless case. At each point on
the Fermi surface, the fermion velocity v = ∇kεk/h̄ is always
perpendicular to the Fermi surface and pointing away from
the Fermi sea. With the help of the Poincaré–Hopf theorem
[29], one can write the Euler characteristic χF as the sum of
the winding numbers of v on all Fermi surfaces,

χF =
∑

α

wα (v), (3)

where wα (v) is the winding number of v on the Fermi surface
Sα . Each electronlike, holelike, and open Fermi surface has
a winding number +1, −1, and 0, thus contributing +1, −1,
and 0 to χF .

Let us consider a lattice version of a p − ip superconduc-
tor with pairing potential �k = �0(sin k · a1 − i sin k · a2),
where a1,2 are lattice basis vectors [30,31]. The Bogoliubov–
de Gennes (BdG) Hamiltonian can be written as

H (k) = (εk − μ)τz + �0 sin k · a1τx + �0 sin k · a2τy, (4)

where τx,y,z are Pauli matrices in the Nambu space and μ is the
chemical potential. The pairing breaks time-reversal symme-
try and the resultant topological superconductor belongs to the
D class, which is characterized by the Chern number [32–34].
H (k) defines a map from the Brillouin zone to a unit sphere
given by ĥ = h/|h| with h = (�0 sin k · a1,�0 sin k · a2, μ −
εk ). The Chern number C is equal to the degree of this map

C = 1

4π

∫
1BZ

d2k ĥ ·
(

∂ĥ
∂kx

× ∂ĥ
∂ky

)
, (5)

which is the number of times that ĥ covers the unit sphere.
In the weak pairing limit �0/μ � 1, the Berry curvature
given by the integrand of Eq. (5) is concentrated near the
Fermi surface. Except for a thin shell near each Fermi sur-
face, ĥ points along ẑ inside and −ẑ outside the Fermi
sea, respectively. On each Fermi surface, hz = μ − εk = 0
and h is reduced to a two-dimensional vector field u =
(�0 sin k · a1,�0 sin k · a2). Therefore, in the weak pairing
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limit, Eq. (5) becomes [35]

C =
∑

α

wα (u), (6)

where

wα (u) = 1

2π

∮
Sα

(ûxdûy − ûydûx ) (7)

is the winding number of û ≡ u/|u| on the αth Fermi surface
Sα with its orientation induced by the Fermi sea.

Equations (3) and (6) suggest that if wα (v) = wα (u) on
each Fermi surface Sα , we will have χF = C. This is equiv-
alent to the condition that the pairing vector field u can be
smoothly deformed without vanishing to be parallel or an-
tiparallel to fermion velocity v on each Fermi surface. This
is the condition given in Sec. II.

If this condition cannot be satisfied with a simple p ± ip
pairing, we would require that Cooper pairs be formed by
electrons from the same Fermi surface in the p-wave channel
with the proper chirality, which requires special engineering
of the pairing potential. In the weak pairing limit, one can
write a BdG-like Hamiltonian near each Fermi surface. By
choosing the proper chirality of p-wave pairing potential near
each Fermi surface, we can have wα (u) = wα (v).

Physically, if simple p ± ip pairings cannot satisfy the
condition, we can still have χF ≡ C (mod 2) if inversion
symmetry is present. To see this, we extend both vector fields
to the entire Brillouin zone and analyze their zeros inside the
Fermi sea.

The zeros are defined as the points where the vector field
vanishes [36]. Each zero can be assigned an index νi, which
is the winding number of the vector field on a small counter-
clockwise oriented circle enclosing the ith zero. Zeros with
indices +1 and −1 can be viewed as vortices and antivortices
of the vector field, respectively. Since the winding number of
a vector field at the boundary of a manifold equals to the sum
of the indices in its interior, we have

χF =
∑

α

wα (v) =
∑
i∈FS

νi(v), (8)

C =
∑

α

wα (u) =
∑
j∈FS

ν j (u), (9)

where νi(v) and ν j (u) are the indices of v and u fields, respec-
tively. We use different subscripts i and j to remind the reader
that the number of zeros for v and u fields could be different.
On the right-hand side, the summation is over all zeros inside
the Fermi sea (FS) [37] (Fig. 2).

We compare the indices of zeros of v and u inside the
Fermi sea. For inversion symmetric systems, both v and u are
odd under inversion, i.e., v(k) = −v(−k + G) and u(k) =
−u(−k + G). All time-reversal-invariant momenta (TRIM)
�n1n2 = n1

2 b2 + n2
2 b2 are inversion centers and therefore also

the zeros, where b1 and b2 are reciprocal lattice basis vectors.
Along any direction across the inversion center, the vector
field must change to its opposite direction. Thus, the index
at each TRIM for both vector fields must be odd [38]. For
vector fields odd under inversion, other zeros must appear in
pairs at k and −k + G. These zeros must have the same index
and both appear inside or outside the Fermi sea. Therefore, we

FIG. 2. Illustration of spinless Fermi sea with dispersion εk =
− cos(kx ) + cos(ky ) + cos(2kx ). (a) μ = 0.5, χF = −1, and C =
−1. (b) μ = −1.5, χF = 2, and C = 0. The left column shows the
fermion velocity and the right column pairing field u extended to the
entire Brillouin zone. Red and green dots label the zeros with indices
+1 and −1, respectively.

have ∑
i∈FS

νi(v) ≡
∑
j∈FS

ν j (u) (mod 2), (10)

i.e.,

χF ≡ C (mod 2). (11)

Note that Eq. (11) holds for any odd-parity pairing potential,
not just the chiral p-wave pairing chosen above.

When both spin components are considered, without spin-
orbit coupling, we demand a time-reversal-breaking p-wave
pairing with spin U (1) rotational symmetry. For example,
we can have each spin component paired in the same chi-
ral p-wave channel, given by the pairing potential �k =
�0(sin k · a1 − i sin k · a2)σ0, where σ0 is the identity matrix
in the spin space. The pairing potential explicitly breaks time-
reversal symmetry. The resultant superconducting state is the
2D analog of the He-3 A phase, with the spin rotational axis
along the y direction [39–42]. More generally, one can choose
an arbitrary spin rotational axis n̂ for the spinful case, and the
corresponding pairing potential becomes

�k = �0(sin k · a1 − i sin k · a2)n̂ · σiσy

≡ (�1 − i�2)n̂ · σiσy, (12)

with u again defined as u = (�1,�2). One can also intro-
duce a weak spin-orbit coupling that does not change χF . In
this case, the topological superconductor is still classified by
the Chern number and its value does not change as long as
the superconducting gap remains open. Therefore, our results
still apply. When multiple bands are present at the Fermi
surface, we would only consider intraband pairing that break
time-reversal symmetry. That is the pairing potential is of the
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form of Eq. (12) for each band. If, for each band, u satisfies
the condition, we have χF = C. Otherwise, we have χF ≡ C
(mod 2) when inversion symmetry is present.

IV. GENERALIZATION TO 3D

Next, we generalize our result to 3D, where each Fermi
surface with genus g contributes 1 − g to the Euler character-
istic χF of the Fermi sea. We require the metallic state respect
time-reversal symmetry of spin-1/2 fermions. By introducing
a time-reversal-invariant p-wave pairing, we can convert the
metallic state to a topological superconductor of the DIII
class, which is classified by an integer.

The pairing potential has the form �k = u · σiσy, where
σ = (σx, σy, σz ) are Pauli matrices in the spin space, and
u = (�0 sin k · a1,�0 sin k · a2,�0 sin k · a3) is the pairing
vector field in 3D. In the continuous limit, this corresponds
to the He-3 B phase [40–42]. Without spin-orbit coupling, the
Hamiltonian can be written as

H (k) = (εk − μ)τz − �0 sin k · a1τxσz

− �0 sin k · a2τy + �0 sin k · a3τxσx. (13)

H (k) defines a map from the 3D Brillouin zone to a unit
3-sphere given by ĥ = h/|h|, with h = (u, μ − εk ). This map
is classified by the homotopy group π3(S3), and its topological
invariant is the 3D winding number Nw. When spin-orbit cou-
pling is taken into account, the topological invariant is still the
3D winding number, although the homotopy group becomes
π3(U (2)).

In complete analogy to the 2D case, we can rewrite Nw as
the sum of 2D winding numbers of u on each Fermi surface
in the weak pairing limit. Similarly, the Euler characteris-
tic is given by the sum of the winding numbers of fermion
velocity v on each Fermi surface. Due to the presence of
both spins, χF is an even integer. When u can be smoothly
deformed without vanishing to be parallel to v, we have
χF /2 = Nw. If this condition cannot be met, in the presence
of inversion symmetry, we have χF /2 ≡ Nw (mod 2). When
multiple bands are present, we would only consider intra-
band pairing, with the pairing potential given by �k for each
band.

V. EXPERIMENTAL IMPLICATIONS

We discuss two experimental implications of the above
correspondences.

To verify the correspondence between Euler characteristic
and Chern number, we utilize the superconducting prox-
imity effect [43,44]. Let us consider spinless fermions. In
general, Cooper pairs would not always form in a time-
reversal-breaking p-wave channel. However, we can induce
such pairings by depositing the 2D metallic sample onto a
chiral p-wave superconducting substrate. If the condition is
satisfied, then the number and chirality of the Majorana edge
modes in the sample is given by χF . If the condition is not
satisfied, with inversion symmetry the number of chiral Ma-
jorana edge modes is given by χF modulo two. In either case,
the number and chirality of Majorana modes in the sample can
be different from that in the substrate (Fig. 3).

FIG. 3. We induce chiral p-wave superconductivity to a 2D
metallic sample by the proximity effect. The number of chiral Ma-
jorana mode on the sample depends on its Euler characteristic. The
number and chirality of the Majorana modes in the sample can be
different from that of the substrate.

The relation between Euler characteristic and topological
invariants of superconductors also suggests that Lifshitz tran-
sitions in the metallic phase can lead to topological phase
transitions in the superconducting phase in both 2D and 3D
[30,45–48]. For example, by applying pressure on a p-wave
topological superconductor, one should be able to observe
topological phase transitions marked by the change of Ma-
jorana edge modes. This topological phase transition is due
to the change of the Fermi sea topology of the metallic
state by the applied pressure [15]. When u and v satisfy
the conditions given above, the superconductor undergoes a
topological phase transition whenever χF changes its value.
If the condition is not satisfied, with inversion symmetry,
topological phase transitions happen when χF changes its
parity.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have established the correspondence be-
tween the topological invariant of superconductors and the
Euler characteristic of the normal-state Fermi sea. The key to
establishing this correspondence is to express the Euler char-
acteristic and the topological invariant of superconductors as
the winding numbers of the fermion velocity v and the pairing
field u on the Fermi surface, respectively. The way to express
topological invariants as properties on the Fermi surface is
reminiscent of the introduction of Fermi-surface topologi-
cal invariants for time-reversal-invariant superconductors [49]
and the characterization of Floquet topological phases with
band-inversion surface properties [50].

Our work reveals a connection between two seemingly
unrelated topological invariants in two physical systems with
drastically different properties. One related question that is
interesting to study in the future is whether there exists a sim-
ilar correspondence between other topological invariants and
what is the physical mechanism to connect them. Answering
this question will help us understand the relations between
different topological phases and may eventually lead to a more
unified understanding of topology in physics.
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